If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-1920x+50772=0
a = 12; b = -1920; c = +50772;
Δ = b2-4ac
Δ = -19202-4·12·50772
Δ = 1249344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1249344}=\sqrt{5184*241}=\sqrt{5184}*\sqrt{241}=72\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1920)-72\sqrt{241}}{2*12}=\frac{1920-72\sqrt{241}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1920)+72\sqrt{241}}{2*12}=\frac{1920+72\sqrt{241}}{24} $
| 1/3(3x-9)=18 | | 4(x+6)-5=11 | | 5c-33=9-c | | -2x-2(3.5)=9 | | 9z-8=52+32 | | (x/4)-15=-13 | | 10=28-6x | | -x/2-18=-21 | | 3x+89=78 | | 3s+9=-9+7s-10 | | 2n+8=-3n-2 | | (5w-2)^2=16 | | 12b+18=5b+4 | | (2x-19)=(5x-32) | | 9n+3=10n | | -5m+2=-4-4m | | 750x+15=900x+20 | | -4(w+7)=-6w-16 | | 9+7p=-7+9p | | s*6-32=40 | | 21=5(w+3)-7w | | a-4=3a+8 | | 2y-1/3=-5 | | z+4=8+2z | | 125x-3=2 | | -6-2x=-24 | | a-4=3a=8 | | -14=4(y-8)-6y | | 3x24=57 | | -1-9w=-10w | | -6x-9=70 | | 10+20=-3(4x-10) |